
A DB2 Performance
Tuning Roadmap:

A High-Level View on Managing the Performance
of DB2 for z/OS

Craig S. Mullins
craig@craigsmullins.com

 Copyright 1999

Mullins Consulting, Inc.

© 2011 Mullins Consulting, Inc. 1

Author

This presentation was prepared by:

Craig S. Mullins
President & Principal Consultant

Mullins Consulting, Inc.

15 Coventry Ct.

Sugar Land, TX 77479

Tel: 281-494-6153

E-mail: craig@craigsmullins.com

This document is protected under the copyright laws of the United States and other countries as an unpublished work. This document

contains information that is proprietary and confidential to Mullins Consulting, Inc., which shall not be disclosed outside or

duplicated, used, or disclosed in whole or in part for any purpose other than as approved by Mullins Consulting, Inc. Any use or

disclosure in whole or in part of this information without the express written permission of Mullins Consulting, Inc. is prohibited.

© 2011 Craig S. Mullins and Mullins Consulting, Inc. (Unpublished). All rights reserved.

Mullins Consulting, Inc.

Application

� SQL

� Host Language Code

Database

� Indexing

� Database and Index Organization

� Database Design (normalization / denormalization)

DB2 Subsystem

� ZPARMs, Pools, Locking, IRLM, DDF, etc.

Environment

� Network

� TP Monitor (CICS, IMS/TM)

� Operating System

The Tuning Progression
Problem Resolution

© 2011 Mullins Consulting, Inc. 2

Mullins Consulting, Inc.

80% of the results of
tuning come from 20%
of the tuning effort -and-

� 20% of your DB2 applications
cause 80% of your problems

Tune one thing at a time
� How else do you know whether

the action helped or not?

All tuning optimizes:
� CPU, I/O or concurrency

Basic Tuning Rules

20%

80%

© 2011 Mullins Consulting, Inc. 3

Mullins Consulting, Inc.

A Few General Performance
Themes to Remember

Almost never say always or never.

� There are rarely any “rules”

that always apply.

Don’t panic and remain humble.

� Remaining calm and open to all solutions, even ones

that recognize “you” as being the culprit, is important

for building efficient DB2 databases and applications.

It is better to design for performance from the start.

� The further into the development process you are, the

more painful it becomes to makes changes.

© 2011 Mullins Consulting, Inc. 4

Mullins Consulting, Inc.
The Cardinal Rule…

It depends!

� Understand your circumstances and apply what makes sense.

© 2011 Mullins Consulting, Inc. 5

Mullins Consulting, Inc.
Application Code and SQL

Application

Code & SQL

Everything

Else

Most relational tuning
experts agree that the
majority of performance
problems with
applications that access
a relational database are
caused by poorly coded
programs or improperly
coded SQL…

� as high as 70% to 80%

© 2011 Mullins Consulting, Inc. 6

Mullins Consulting, Inc.

Simpler is better, but complex SQL can be efficient

In general, let SQL do the work, not the program

Retrieve the absolute minimum # of rows required

Retrieve only those columns required - never more

Always provide join predicates (i.e. no Cartesian products)

Favor Stage 1 and Indexable predicates

� Host variable data type/length should match column

Avoid tablespace scans for large tables (usually)

Avoid sorting when possible:

� indexes for ORDER BY and GROUP BY

� judicious use of DISTINCT

� UNION ALL versus UNION (if possible)

Application Tuning: SQL

© 2011 Mullins Consulting, Inc. 7

Mullins Consulting, Inc.

Data

Application Tuning: Stage 1 and 2

Result

DATA MANAGER

RELATIONAL DATA SERVICES

I/O

BUFFER MANAGER

STAGE 2 - Evaluated after
data retrieval via the RDS
(Relational Data Services)
which is more expensive
than the Data Manager.

STAGE 1 - Evaluated at the
time the data rows are
retrieved. There is a
performance advantage to
using Stage 1 predicates
because fewer rows are
passed to Stage 2 via the
Data Manager

SQL Request

Managing Performance (SC19-2978)
• Table 66 starting on page 269

© 2011 Mullins Consulting, Inc. 8

Mullins Consulting, Inc.
Stage 3?

Not an actual Stage but

� It can be helpful to think of moving predicates from SQL

into your programs as Stage 3

� Stage 1 better than Stage 2

� Stage 2 better than Stage 3

© 2011 Mullins Consulting, Inc. 9

Mullins Consulting, Inc.

Ask Only for What You
Absolutely Need

Retrieve the absolute minimum # of rows required

� Code appropriate WHERE clauses

� The only rows that should be returned to your program should be those that

you need to process

Retrieve only those columns required: never more

� Don’t ask for what you don’t need

� Sometimes shortened to � Avoid SELECT *

— This is a good idea for several reasons:

1. Insulation of programs from change

2. Performance

— But it is not enough…

© 2011 Mullins Consulting, Inc. 10

Mullins Consulting, Inc.
What is Wrong with this SQL?

Why are we asking
for things we
already know?

© 2011 Mullins Consulting, Inc. 11

Mullins Consulting, Inc.

http://www.craigsmullins.com/dbu_0703.htm

Mullins Consulting, Inc.

DB2

Catalog

Other System

Information

SQL

Statement(s)

DB2 Subsystem

DB2

Optimizer

Optimized

Access

Path(s)

Query Cost

Formulas

DBAS
(DSNDBM1)Optimization

Hint

OPTHINT in PLAN_TABLE

Plan

Tables

Application Tuning: Optimization

• PLAN_TABLE

• DSN_STATEMNT_TABLE

• DSN_FUNCTION_TABLE

• Plus many others

© 2011 Mullins Consulting, Inc. 13

Mullins Consulting, Inc.

Hint used?

Index used?

� Single, Multiple

Matching column(s)?

Index only?

TS scan (page range)

Type of Join?

� Nested Loop

� Merge Scan

� Hybrid

Application Tuning: EXPLAIN Analysis

Prefetch?

� Sequential

� List

Parallelism used?

� I/O, CPU, Sysplex

� Degree

Sort required?

� Join, Unique,

Group By, Order By

Locking

SQL Text

Table & Index Information

� DDL

� Stats

Cardinality

Other Stuff

� Triggers

� RI

� Constraints

© 2011 Mullins Consulting, Inc. 14

Mullins Consulting, Inc.

Minimize deadlocks by coding updates in the same
sequence regardless of program

Issue data modification SQL statements as close
to the end of the UOW as possible

� the later in the UOW the update occurs, the

shorter the duration of the lock

Encourage Lock Avoidance

� ISOLATION(CS) / CURRENTDATA(NO)

� Can be used only by read only cursors

Use LOCK TABLE judiciously

Consider ISOLATION(UR) to avoid locking

Application Tuning: Locking

© 2011 Mullins Consulting, Inc. 15

Mullins Consulting, Inc.
Application Tuning: Commit

Avoid Bachelor Programming Syndrome

Plan and implement a COMMIT strategy

� or experience TIMEOUTs and DEADLOCKs

© 2011 Mullins Consulting, Inc. 16

Mullins Consulting, Inc.

Do not embed efficient SQL in inefficient program logic

� Classic example: finely tuned, efficient
SQL inside of a program loop that
executes 3,510,627 times!

Let SQL do the work when possible

� e.g.) do not code “program” joins

Sign of trouble: SQL followed by lots of
IF...ELSE or CASE statements

If you are only going to retrieve one row, consider
coding a singleton SELECT (usually)

Consider adopting multi-row FETCH

� Multiple tests have shown that moving to multi-row FETCH can yield
between a 50% to 60% improvement for 100 and 1000 FETCHes

Application Tuning: Program

© 2011 Mullins Consulting, Inc. 17

Mullins Consulting, Inc.

When designing online transactions, limit the amount of
data to be retrieved to a reasonable amount

� No one reads hundreds of pages/screens online!

Limit online sorting and joining (but be reasonable)

Consider OPTIMIZE FOR 1 ROW to disable list prefetch

� With list prefetch, DB2 acquires a list of RIDs from a matching index,

sorts the RIDs, & accesses data by the RID list

� Can be very inefficient for a multiple page transaction

Application Tuning:
Online vs. Batch

© 2011 Mullins Consulting, Inc. 18

Mullins Consulting, Inc.
Dynamic vs. Static SQL

Dynamic SQL

� Dynamic SQL is coded and embedded into an application program
differently than static SQL. Instead of hard-coding, the SQL is built
within the program “on the fly” as it executes.

� Once built, the dynamic SQL statement must be compiled using the
PREPARE statement; or, alternately, an implicit PREPARE is issued
behind the scenes when implementing the EXECUTE IMMEDIATE
flavor of dynamic SQL.

Static SQL

� Static SQL is hard-coded and embedded into an application
program. The SQL is bound into a package, which determines the
access path that DB2 will use when the program is run. Although
dynamic SQL is more flexible than static, static SQL offers some
flexibility by using host variables.

© 2011 Mullins Consulting, Inc. 19

Mullins Consulting, Inc.

Static vs. Dynamic SQL
Considerations

The following criteria should be used when determining
whether to favor dynamic SQL over static SQL:

� Performance sensitivity of the SQL statement

— Dynamic SQL will incur a higher initial cost per SQL statement due to the need to
prepare the SQL before use. But once prepared, the difference in execution time
for dynamic SQL compared to static SQL diminishes.

� Data uniformity

— Dynamic SQL can result in more efficient access paths than static SQL is whenever
data is:

1. Non-uniformly distributed. (e.g. cigar smokers skews male)

2. Correlated (e.g. CITY, STATE, and ZIP_CODE data will be correlated)

� Use of range predicates

— The more frequently you need to use range predicates (<, >, <=, >=, BETWEEN,
LIKE) the more you should favor dynamic SQL.

— The optimizer can take advantage of distribution statistics & histogram statistics
to formulate better access paths because the actual range will be known.

© 2011 Mullins Consulting, Inc. 20

Mullins Consulting, Inc.

Static vs. Dynamic SQL
(Considerations continued)

Criteria for determining use of dynamic or static SQL (cont.)

� Repetitious Execution

— As the frequency of execution increases, then you should favor static SQL (or
perhaps dynamic SQL with local dynamic statement caching (KEEPDYNAMIC YES).

— The cost of the PREPARE becomes a smaller and smaller percentage of the
overall run time of the statement the more frequently it runs (if the cached
prepare is reused).

� Nature of Query

— When you need all or part of the SQL statement to be generated during
application execution favor dynamic over static SQL.

� Run Time Environment

— Dynamic SQL can be the answer when you need to build an application where
the database objects may not exist at precompile time. Dynamic might be a
better option than static specifying VALIDATE(RUN).

� Frequency of RUNSTATS

— When your application needs to access data that changes frequently and
dramatically, it makes sense to consider dynamic SQL.

© 2011 Mullins Consulting, Inc. 21

Mullins Consulting, Inc.

DATABASE

STOGROUP

Segmented

Tablespace

Simple

Tablespace

Partitioned

Tablespace

Table

Table
Table
w/LOB

Table

Table

Table
Table

Partitioning

Index

Index

Index

Index

Index

Index

Index

Non-Partitioning

Index

LOB

Tablespace

Auxiliary

(LOB)

Table

w/LOB

Auxiliary

(LOB)

Table

Separate LOB

Tablespace

per Partition

(for each

LOB column)

Database Object Tuning

Mullins Consulting, Inc.
Universal Table Spaces

Combine the space management of segmented table
spaces with the organization of partitioned table spaces.

Types of universal table space:

� Partition by range (or range partitioned)

� Partition by growth

Benefits of universal table space:

� Flexibility

� Growth

� Uses space map pages, like segmented

— More information about free space space than just partitioned

— Improved mass delete performance

— Immediate reuse of segments after a table is dropped or mass deleted

© 2011 Mullins Consulting, Inc. 23

Mullins Consulting, Inc.

Universal Table Spaces
Partition By Growth (PBG)

Ideal when a table is expected to exceed 64 GB
but there is no suitable partitioning key

� Begins as a single-partition table space

� Grows automatically: partitions are added as needed,

as the data volume expands

� Can grow up to 128 TB

— The maximum size is determined by the MAXPARTITIONS and DSSIZE

values that you specified and the page size

Consider UTS PBG TS as replacement for simple TS

© 2011 Mullins Consulting, Inc. 24

Mullins Consulting, Inc.

Universal Table Spaces
Partition By Range (PBR)

Partition by range, or range-partitioned, universal table
spaces are created by specifying both SEGSIZE and
NUMPARTS on the CREATE TABLESPACE statement.

� All actions that are allowed on exclusively partitioned

or exclusively segmented table spaces are allowed on

range-partitioned universal table spaces.

Ranges for range-partitioned universal table space can be
specified on subsequent CREATE TABLE (or CREATE INDEX

statements).

© 2011 Mullins Consulting, Inc. 25

Mullins Consulting, Inc.

General Table Space
Recommendations

As of DB2 V9, favor universal table spaces over
segmented or traditional partitioned table spaces

� UTS are the future of DB2 table spaces

� At some point, other table space types are likely to be

deprecated (like simple already have been)

In most cases limit yourself to one table per table space

� You can still use a segmented table space when you must have

multi-table TS

DSSIZE < 4GB unless you definitely need large TS

© 2011 Mullins Consulting, Inc. 26

Mullins Consulting, Inc.

Be sure to run RUNSTATS

� as data volume changes, new data structures added

� followed by (RE)BIND with /EXPLAIN(YES)

Review statistics (or RTS) to determine
when to REORG

� NEARINDREF and FARINDREF

� LEAFDIST, PERCDROP

� For clustering indexes

♦ NEAROFFPOSF and FAROFFPOSF

♦ CLUSTERRATIOF

� Migrate to Real Time Statistics!

� Analyze access patterns before reorganizing

♦ Random vs. sequential

♦ Consider automation

Database Organization

© 2011 Mullins Consulting, Inc. 27

Mullins Consulting, Inc.

As normalized as possible, but performance before aesthetics;
normalization optimizes “update” at the expense of “retrieval”

� Don’t let data modelers dictate “physical” design

Do not create base table views

Avoid the defaults - they are usually wrong

Determine amount of free space

� PCTFREE – amount of each page to remain free during REORG

� FREEPAGE – after this many pages of data, keep an empty page

� Based on volatility

� Don’t just let everything default (for example, to 10).

Table Design Basics

© 2011 Mullins Consulting, Inc. 28

Mullins Consulting, Inc.

Avoid wasted space (page size?)

� Row length > 4056 requires larger page size

� Row length 2029 - 4056 = one row per page

— Ex) 2500 bytes: page size?

� Row length < 15 wastes space (max 255 rows/page)

Sequence columns based on logging

� Infrequently updated non-variable columns first

� Static (infrequently updated) variable columns

� Frequently updated columns last

� Frequently modified together, place next to each other

Database Design: Rows & Columns

Reordered

Row Format

New DB2 9
Format

© 2011 Mullins Consulting, Inc. 29

Mullins Consulting, Inc.

Use NULL sparingly

Use appropriate DB2 data types

� Use DATE instead of CHAR or numeric for dates

� Store numeric data using a numeric data type

— INTEGER, SMALLINT, DECIMAL, etc.

� INTEGER versus DECIMAL(x,0)

— Control over domain vs. storage requirements

� “DATE and TIME” versus TIMESTAMP

— Ease of use/storage vs. precision/arithmetic

Compression versus VARCHAR

� Compression = less overhead (no 2 byte prefix)

� Compression requires no programmatic handling

Database Design: Data Types

BIGINT

DECFLOAT

VARBINARY

XML

Be Aware
Of New DB2 9
Data Types

© 2011 Mullins Consulting, Inc. 30

Mullins Consulting, Inc.

Use DB2 declarative RI instead of program RI (usually)

� performance and ease of use

� ensure integrity for planned and ad hoc database modification

Do not use RI for lookup tables (overkill)

� consider CHECK constraints vs. lookup tables

Use triggers only when declarative RI is not workable

� Triggers are less efficient (usually) than RI

— but usually better than enforcing in application programs

Specify indexes on foreign keys

Database Design: Integrity

© 2011 Mullins Consulting, Inc. 31

Mullins Consulting, Inc.
Index Usage Basics

Know which columns are indexed

� …and favor specifying them in your WHERE clauses

� Obviously, if the column is not in an index DB2 can never use an index to

satisfy the predicate.

— There are other considerations.

Specify the leading column of composite indexes

� For example: IX1 (LNAME, FNAME, MIDINIT)

SELECT * FROM CUST WHERE LNAME = ?

� If instead… WHERE FNAME = ?

— DB2 could not do a direct index lookup

© 2011 Mullins Consulting, Inc. 32

Mullins Consulting, Inc.

A proper indexing strategy can be the #1
factor to ensure optimal performance

First take care of unique & PK constraints

Then for foreign keys (usually)

Heavily used queries - predicates

Overloading of columns for IXO

Index to avoid sorting

� ORDER BY, GROUP BY

Consider INS / UPD / DEL implications

Consider how to index variable cols - [PADDED | NOT PADDED]

Index not used? SYSIBM.SYSINDEXSPACESTATS.LASTUSED

Database Design: Indexes

© 2011 Mullins Consulting, Inc. 33

Mullins Consulting, Inc.

Bufferpool allocations - do not default everything to BP0

� Explicitly specify a buffer pool for every table space and index

Ideas:

� isolate the catalog in BP0

� separate indexes from table spaces

� isolate heavily hit data

� isolate sort work area

� optimize BP strategy for your data & app

processing mix: sequential vs. random

� there is no “silver bullet” approach

— more on bufferpool tuning coming up!

Database Design:
Buffer Pools, Pt. 1

© 2011 Mullins Consulting, Inc. 34

Mullins Consulting, Inc.

REORG/RUNSTATS/REBIND

Straddling the line between
application and database

performance we have The Five R’s!

© 2011 Mullins Consulting, Inc. 35

Mullins Consulting, Inc.
BIND and REBIND

The BIND and REBIND commands determine the access
paths that the SQL in your programs will use to get to the
data

� BIND – accepts a DBRM (Data Base Request Module)

and binds it into a package (or plan, until V10, at

which point DBRMs will not be able to be bound

directly to plans)

— SQL can change

� REBIND – take a package (or plan) that has already

been bound and re-assesses the access paths based

on the latest statistics

— SQL cannot change

© 2011 Mullins Consulting, Inc. 36

Mullins Consulting, Inc.
Why Rebind?

Data volumes have changed

� More data

� Less data

Data skew has changed

Data distribution has changed

DB2 has changed

� PTF

� New version

Environment has changed

© 2011 Mullins Consulting, Inc. 37

Mullins Consulting, Inc.
Scheduling Rebinds…

REBIND is critical for application performance

It is a wise course of action to plan your REBIND strategy

There are several common approaches:

� Regular maintenance: REBIND after RUNSTATS

— Perhaps not every day, but REBIND are done after RUNSTATS

� Global REBIND after migration to new DB2 version

� Global REBIND after installing new PTFs

— Above two mean access paths only change when DB2 changes

� REBIND after x days / weeks / months …

� Let it Ride! (“If it ain’t broke, don’t fix it.”)

© 2011 Mullins Consulting, Inc. 38

Mullins Consulting, Inc.
Let It Ride

Programs once bound, are (almost) never rebound.

� Reason:

— Fear of access path degradation

� Result:

— No improvement to access paths

— No CPU savings from new DB2 efficiencies

— Sub-optimal performance

— Every DB2 program potentially suffers for fear
that one or two SQL statements will become
inefficient

© 2011 Mullins Consulting, Inc. 39

Mullins Consulting, Inc.
Regular REBIND

Better Approach: Regular REBINDing

� The Three R’s (next slide)

� Why is this better?

— Access paths are more up-to-date based on the

current state of the data.

� Result:

— Generally, improved access paths

— CPU savings from new DB2 efficiencies

— Optimal performance

� Of course, you can still get those “problem”

access paths.

© 2011 Mullins Consulting, Inc. 40

Mullins Consulting, Inc.
The Three R’s

� REORG

� RUNSTATS

� REBIND

Still a couple of R’s short.

Mullins Consulting, Inc.
Problems With the Three R’s

They pose a lot of questions…

� When should you REORGanize?

— To properly determine requires statistics (available in RTS).

— So perhaps it should be RTS, REORG, RUNSTATS, REBIND?

� When should you run RUNSTATS?

— To properly determine you need to know the make-up, usage, and
volatility of your data.

� When should you REBIND?

— When statistics have changed significantly enough to change
access paths.

— Knowing when this happens can be tricky.

© 2011 Mullins Consulting, Inc. 42

Mullins Consulting, Inc.

The Importance of Accurate
DB2 Catalog Statistics

Why correct statistics are so important

� The DB2 Optimizer makes all access path decisions

� Accurate stats help the Optimizer make the correct decisions

� Incorrect statistics tend to degrade performance due to bad access paths

“More than half of the bad access
paths sent to IBM support are caused
by incorrect statistics.”

� According to Terry Purcell (IBM, SVL)

© 2011 Mullins Consulting, Inc. 43

Mullins Consulting, Inc.
Getting Correct Statistics

Ways to update statistics

� RUNSTATS utility

� REORG with inline statistics

� LOAD with inline statistics

� Using SQL for statistics manipulation

� Transferring statistics from another system

� Using tools for manipulation

© 2011 Mullins Consulting, Inc. 44

Mullins Consulting, Inc.

OK, Then…
When Should we REBIND?

When do we REBIND?

� The best answer to this questions is: “Whenever data has changed

significantly enough that it may impact the performance of the

existing access paths.”

— The problem is knowing exactly when this happens.

DB2 application performance can be negatively affected by uncontrolled
REBINDs.

� Causes

— Optimizer inefficiency

— Volatile tables

— Catalog pollution

— Inefficient use of RUNSTATS

© 2011 Mullins Consulting, Inc. 45

Mullins Consulting, Inc.

So The Best Approach:
The 3 5 R’s

RTS (or RUNSTATS)

REORG

RUNSTATS

REBIND

Recheck

� In other words, what did the REBIND do?

— Did any access paths change?

— Are they better or worse?

— Does anything need attention?

© 2011 Mullins Consulting, Inc. 46

Mullins Consulting, Inc.

Access Path Degradation
Correction

Problem access paths can still occur. If so:

� Absolutely determine you are not at fault by re-re-

checking

— Statistics up-to-date?

— Correct statistics run?

— Package rebound with latest statistics?

� If problems persist, one of the following

approaches could work for you:

— Plan Stability (V9)

— Tweak SQL (ways to “coerce” the optimizer)

— Code and Use an Access Path Hint

— Manipulate statistics (caution)

© 2011 Mullins Consulting, Inc. 47

Mullins Consulting, Inc.
System & DB2 Subsystem Tuning

SSAS

System Services

Address Space

Logging

Recovery

Access to TP

DBAS

Database Services

Address Space

RDS - Optimizer

Data Manager

Buffer Manager

IRLM

Internal Resource

Lock Manager

Locking

SPAS/WLM

Stored

Procedure

Address

Space

DDF

Distributed

Data

Facility

VSAM

Media

Manager

Data

Allied

Agent

Address

Spaces
• CICS

• IMS

• TSO

© 2011 Mullins Consulting, Inc. 48

Mullins Consulting, Inc.
Memory

Relational database systems “love” memory

� Performance improves if important

information and run-time details

are cached in memory instead of

being read from disk every time

they are needed.

© 2011 Mullins Consulting, Inc. 49

Mullins Consulting, Inc.
GETPAGE Processing

DATA

MANAGER

BUFFER

MANAGERGETPAGE

REQUEST

Buffer Pool Hiperpool

Page Check

(Y/N)

Page Check

(Y/N)

DASDRead I/O

(By Media

Manager)

MVPG/ADMF

C

A

C

H

E

© 2011 Mullins Consulting, Inc. 50

Mullins Consulting, Inc.

DB2 uses four types of “pools” – or memory structures to
cache data and information to avoid costly disk I/O

� Buffer Pools - used to cache data in memory when it is read
from disk.

� RID Pool - used to sort RIDs (record identifiers) for List Prefetch,
Multiple Index Access, and Hybrid Joins.

� EDM Pool - used to cache program details (access paths, dynamic

PREPARE, authorization) and

database structural information (DBD).

� Sort Pool - used when DB2 must
sort data.

Swimming in DB2’s “ Pools”

© 2011 Mullins Consulting, Inc. 51

Mullins Consulting, Inc.

DB2 provides up to 80 buffer pools - USE THEM!

- 4K: BP0 thru BP49 - 8K: BP8K0 thru BP8K9

- 16K: BP16K0 thru BP16K9 - 32K: BP32K thru BP32K9

Consider reserving a bufferpool for tuning

� Move problem objects there to isolate for tuning

DB2 V8 significantly increased buffer pool storage

� 1TB new limit for buffer pools

� No more hiperpools; no more bufferpools in data spaces

Monitor hit ratio: % times a page is found in the buffer pool

� The higher the ratio the better

Subsystem: Buffer Pools, Pt. 2

(GETPAGES – PAGES READ) / GETPAGES

SYNC I/O + ASYNC I/O

© 2011 Mullins Consulting, Inc. 52

Mullins Consulting, Inc.
Buffer Pools: Tune Thresholds

Variable Thresholds

DWQT: Deferred

Write (30%)

Prefetch Disabled

(90%)

Immediate Write

(97.5%)

Data Manager Critical

(95%)

VDWQT: Vertical

Deferred Write (5%)

VPPSEQT: Parallel

Sequential

(50% of VPSEQT)

VPSEQT:

Sequential

Steal (80%)

VPXPSEQT: Assisting

Parallel Sequential

(0% of VPPSEQT)

(default was 10% pre-V9)

(default was 50% pre-V9)

© 2011 Mullins Consulting, Inc. 53

Mullins Consulting, Inc.
Buffer Pools: Monitor Thresholds

Fixed Thresholds

DWQT: Deferred

Write (30%)

Prefetch Disabled

(90%)

Immediate Write

(97.5%)

Data Manager Critical

(95%)

VDWQT: Vertical

Deferred Write (5%)

VPPSEQT: Parallel

Sequential

(50% of VPSEQT)

VPSEQT:

Sequential

Steal (80%)

VPXPSEQT: Assisting

Parallel Sequential

(0% of VPPSEQT)

© 2011 Mullins Consulting, Inc. 54

Mullins Consulting, Inc.

One RID pool for all processing.

The default RID pool size is 4 MB.
Can be changed.

RID Pool is used for:

� enforcing unique keys while updating

multiple rows

� sorting RIDs during the following

operations:

— List prefetch, including single

index list prefetch

— Access via multiple indexes

— Hybrid Joins

Subsystem: RID Pool

© 2011 Mullins Consulting, Inc. 55

Mullins Consulting, Inc.

1. RID Pool Overflow (no storage)

� Requests exceed ZPARM or DBM1 address space size

� Limit: More than 16 million RID entries used or a single
SQL statement consumes more than 50% of the RID Pool
— The SQL causing this condition receives a -904.

— Should not occur frequently.

2. DB2 anticipates RID pool access is not
economical (RDS Limit)

� Processing is suspended and access degrades to a table space
scan
— DB2 10 changes this behavior; write RIDs to disk instead of degrading to TS scan

� You can disable the access paths listed above by specifying a
RID pool size of 0.
— Don’t forget to REBIND to change access paths requiring RID pool

RID Pool Problems?

© 2011 Mullins Consulting, Inc. 56

Mullins Consulting, Inc.
Subsystem: EDM Pool

EDM Pool

DBD DBD SKPT

SKCT SKCT

SKPT

CT

CT

CT

CT

CTPT CT

DB2 Database Services Address Space What’s in

EDM Pool
DBDs

SKCTs

CTs

SKPTs

PTs

Auth Cache

Dyn SQL Prep

Free pages

V8 breaks each

out into sep-

arate “pools”

Further break

out in V9

DS DS

DS

General ROT: shoot for 80% efficiency; (1 in 5 DBD/SKPT/SKCT needs to be loaded)

CT

© 2011 Mullins Consulting, Inc. 57

Mullins Consulting, Inc.
The EDM Pool and V8, V9

V8: EDM Pool split into three specific pools:

� Below the 2GB Bar

— EDMPOOL: EDM Pool stores only CTs, PTs, SKCTs, SKPTs

– Should be able to reduce the size of this EDM pool
– Provide some VSCR for below the 2GB Bar storage

� Above the 2GB Bar

— EDMDBDC: DBDs

— EDMSTMTC: Cached Dynamic Statements

V9: Introduces additional changes

� Above the 2GB Bar: EDM_SKELETON_POOL

— All SKCTs and SKPTs

� A portion of the CT and PT is moved above the bar, too

© 2011 Mullins Consulting, Inc. 58

Mullins Consulting, Inc.

Sort Pool value is the maximum size of the sort
work area allocated for each concurrent sort user.

The default Sort Pool size is 2 MB.

� It can be changed on install panel DSNTIPC.

In general, estimate the required storage for a
sort pool using the following formula:

32000 * (12 + sort key length + sort data length + 4))

Sorts that don’t fit in SORTPOOL overflow to workfile

� DSNDB07 for non-Data Sharing systems

Subsystem: Sort Pool

© 2011 Mullins Consulting, Inc. 59

Mullins Consulting, Inc.
Sort Performance

� In general, the larger the sort pool, the more efficient
the sort is.

— If the data fits into the sort pool, workfile database will not be
required

� Allocate additional physical work files in excess of the
defaults, and put those work files in their own buffer
pool (e.g. BP7).

— At least 5, sized the same, with no secondary

� The better sorted the data is originally, the more
efficient the sort will be.

� Minimize the amount of data that needs to be sorted! �

© 2011 Mullins Consulting, Inc. 60

Mullins Consulting, Inc.
Minimize Amount of Data to Sort

DB2 uses a tournament sort (next page) unless…

If Sorted Record > 4075, uses a tag sort (less efficient)

because the data no longer fits on a 4K page:

� Data to sort put directly into 32K workfile database

— For this reason be sure to always allocate at least one

32K workfile in DSNDB07

� Keys + RID are sorted

� Data retrieved from the sort

using the RID

© 2011 Mullins Consulting, Inc. 61

Mullins Consulting, Inc.
Tournament Sort

DB2 uses a Tournament Sort

� Built into the hardware microcode and very efficient

How Does it Work?

� Input data to be sorted passes through a tree
structure

� At each level in the tree the data is compared to
data already there

� The ‘winner’ (lowest value for an ASC) moves up the
tree

� At the top of the tree, the sorted entries are placed
into runs

� Winning entries are removed from the tree and the
next value inserted

� If there is more than one run, the runs must be
merged

© 2011 Mullins Consulting, Inc. 62

Mullins Consulting, Inc.

DB2 will only run as fast as the log

Log Configuration

� Dual Active Logging is the preferred configuration

� Each log defined to separate devices and on separate channels

Output Buffer Size

� As BIG as possible please

� Waits occur if OUTBUFF is too small

� Max is 400000K

DB2 rollbacks from log data on DASD

� Consider keeping archive logs on DASD*

Subsystem: Logging

* and then migrate archive logs to tape after a specified period of time (HSM)

© 2011 Mullins Consulting, Inc. 63

Mullins Consulting, Inc.
Subsystem: System Checkpoint

Periodically DB2 takes a checkpoint, containing:

� currently open unit of recoveries (UR) within DB2, all open page sets,
a list of page sets with exception states, and a list of page sets
updated by any currently open UR

� Dirty pages are written out at checkpoint and processing stops until
they are written – so make sure DWQT is sized correctly!

Specified in the CHKFREQ* parameter in DSNZPARM

� Number of log records written

� Or, as of V7, number of minutes

Can be changed dynamically using:

� SET LOG or (temporary)

� SET SYSPARM (as of V7) (permanent)

5 minute intervals for

checkpoints during

peak processing times.

*CHKFREQ replaced LOGLOAD in DB2 V7

© 2011 Mullins Consulting, Inc. 64

Mullins Consulting, Inc.

MAXCSA
� 250×(LOCKS PER USER)×(MAX USERS)

ITRACE=NO
� Do not use ITRACE;

� Instead, if needed, use DB2 lock traces.

DEADLOK
1. The number of seconds between two successive

scans for a local deadlock

2. The number of local scans that occur before a

scan for global deadlock starts

Subsystem Tuning: IRLM

250 bytes of storage

for each lock.

© 2011 Mullins Consulting, Inc. 65

Mullins Consulting, Inc.Consider Specialty Processors: zIIP

The zIIP (System z Integrated Information Processor)

� Transparently (to the application) redirect portions of

DB2 distributed (mostly) workload.

— Remote DRDA access, including JDBC and ODBC access to DB2,

including access across LPARs using Hipersockets;

– Including native SQL stored procedures that are run through DDF (DB2 V9);

— BI application query processing utilizing DB2 star-schema parallel

query capabilities;

— XML parsing (DB2 V9) and;

— Certain IBM DB2 utility processing that performs maintenance on

index structures.

– The BUILD portion of LOAD, REORG, and REBUILD

© 2011 Mullins Consulting, Inc. 66

Mullins Consulting, Inc.

Operating System

� version, memory, JCL, RACF, etc.

TP Monitors

� CICS, IMS/TM, C/S GUI, web, etc.

Networking

� TCP/IP, SNA, DRDA, stored procedures, etc.

DASD

� storage, ESS/Shark, placement, etc.

Environment

© 2011 Mullins Consulting, Inc. 67

Mullins Consulting, Inc.
Summary

Application

Database

DB2 Subsystem

Environment

Do one thing at a time and;

You can tune DB2!

© 2011 Mullins Consulting, Inc. 68

Mullins Consulting, Inc.

Mullins Consulting, Inc.
Contact Information

Craig S. Mullins

Mullins Consulting, Inc.
15 Coventry Court
Sugar Land, TX 77479

http://www.craigsmullins.com

http://www.craigsmullins.com/cm-book.htm

http://www.craigsmullins.com/dba_book.htm

craig@craigsmullins.com

Phone: (281) 494-6153

